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The controlled generation of entangled states and their subsequent detection are integral aspects of

quantum information science. In this Letter, we implement a simple and precise technique that produces

any of the four Bell states in the orbital angular momentum degree of freedom. We then use these states to

perform the first experimental demonstration of an accessible nonlinear entanglement witness. Such a

witness determines entanglement by using the same measurements as required for a linear witness but can

detect, in this case, twice as many states as a single linear witness can. We anticipate that our method of

state preparation and nonlinear witnesses will have further uses in areas of quantum science, such as

superdense coding and quantum key distribution.
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The generation and controlled manipulation of
quantum states is vital to existing and emerging quantum
technologies. In particular, controlled unitary operations
on entangled quantum states [1] play an essential role in
many quantum information protocols. For example, super-
dense coding relies upon unitary operations as a means by
which to encode information [2,3]. As a result, it is impor-
tant to be able to accurately implement controlled unitary
operations in quantum systems. Unitary operations are
easily accomplished in the polarization degree of freedom
by using half- and quarter-wave plates, and thus a range of
entangled states can be obtained. In contrast, controlled
unitary operations had not been previously implemented in
the orbital angular momentum (OAM) degree of freedom
to produce the same range of entangled states. Such op-
erations are becoming increasingly important due to the
emergence of OAM as a resource for quantum information
science [4–9].

In addition to the manipulation of entangled states, the
efficient detection of entanglement is also vital to quantum
information applications [10]. An entanglement witness
establishes directly whether a quantum state belonging to
a certain class is entangled [11–16]. Linear entanglement
witnesses [17–19], which are witnesses that depend line-
arly on expectation values, are efficient, as they require the
fewest possible number of measurements that will give
sufficient information about the state; however, in order
to function optimally, they require prior knowledge of the
form of the entangled state.

Alternatively, nonlinear entanglement witnesses
improve upon an existing linear entanglement witness
with a term that relies nonlinearly on expectation value
[20–26]; thus, a nonlinear witness is able to verify entan-
glement over a significantly larger set of states compared to
its linear counterpart. Considering the example of the Bell

states, one can construct a single nonlinear witness that
will detect both correlated Bell states j�þi and j��i and a
single nonlinear witness that will detect both anticorrelated
Bell states j�þi and j��i, something not possible by
using linear witnesses. Importantly, a new class of non-
linear witness, called accessible nonlinear witnesses, ena-
bles the detection of this wider class of states using the
same measurements as the linear witness [27].
The main result of our Letter is the controlled generation

of a wide range of states entangled in their OAM and the
subsequent verification of the entanglement of these states
via accessible nonlinear entanglement witnesses. Our
method is simple, precise, and the first implementation of
such a procedure for OAM, and, importantly, the states
generated include all the Bell states. We compare the
expectation values of the nonlinear witnesses to those of
the standard linear witnesses and establish that the non-
linear witnesses are capable of detecting entanglement
over a wider range of states. The particular degree of
freedom we choose to investigate is orbital angular
momentum; however, our results are general in that the
nonlinear witness procedures can be applied to other
degrees of freedom such as polarization or spin.
Quantum state preparation.—We generate OAM entan-

glement [4,7,28] by using parametric down-conversion and
perform unitary operations using Dove prisms. By chang-
ing the number of prisms in the system, we are able to
choose between a correlated and an anticorrelated state. By
changing the angle of the prisms, we are able to manipulate
the phase between the entangled modes; see Fig. 1.
Light with orbital angular momentum ‘@ is represented

by the state j‘i and has a helical phase front that depends
on the value of ‘. A Dove prism placed at an angle �=2 in
the path of such light performs two actions on the trans-
mitted light: first, the transverse cross section of any
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transmitted beam is reversed such that ‘ ! �‘; second, an
‘-dependent phase shift is introduced such that the modes
within the beam acquire the additional phase ‘�. It follows
that two Dove prisms can be used to introduce an
‘-dependent phase shift between different OAM modes
while leaving the sign of ‘ unchanged.

Light produced by parametric down-conversion is
entangled in the orbital angular momentum basis as

j�i ¼ X1

‘¼�1
c‘j‘iA � j � ‘iB; (1)

where jc‘j2 represents the probability that the photon in
arm A has OAM ‘@ and the photon in arm B has OAM
�‘@. Placing a Dove prism in arm B of the down-
conversion system, we obtain a correlated entangled state;
i.e., the photons are both in the same state. Of particular
interest are the two-dimensional subspaces that include
the j‘ ¼ 0i mode, as these are correlated entangled states
of the form

j�‘i ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ "2‘

q ðj0; 0i þ "‘e
i’j‘; ‘iÞ; (2)

where the phase ’ ¼ ‘�B is determined by the angle of the
Dove prism �B=2. Here we use ja; bi to be equivalent to
jaiA � jbiB. Placing a second Dove prism oriented at an
angle �A=2 in arm A of the system converts the state j�‘i to
an anticorrelated state

j�‘i ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ "2‘

q ðj0; 0i þ "‘e
i�j � ‘; ‘iÞ; (3)

where� ¼ ‘ð�B � �AÞ. Using the states j�‘i and j�‘i, we
can test the ability of the nonlinear witness for detecting

entanglement of a large range of different states. The Bell
states are particular cases of these states where "‘ ¼ 1 and
� ¼ 0, � or ’ ¼ 0, �. To our knowledge, this method
has not been previously demonstrated and represents a new
technique for quantum state preparation.
Entanglement witnesses.—The form of a mixed state

containing an entangled state jc i is given by

�c ¼ jc ihc jpþ 1ð1� pÞ=4; (4)

where p is the probability of obtaining the entangled
state jc i and 1 is the identity matrix, which represents
uncolored noise. We use the superscript c to indicate
that the convex combination � is partially composed of
the entangled state jc i. Whether or not the state �c is
entangled is determined by the probability p: States with
p > 1=3 are entangled [10].
The expectation value w of an entanglement witness W

on the quantum state �c provides information about the
state: A negative expectation value indicates entanglement,
whereas a positive expectation value gives an inconclusive
result. If a positive expectation value is obtained, the
information gained is that either the state is separable or
the witness chosen was not appropriate for the form of the
entangled state.
One limitation of linear witnesses is that they function

only over restricted sets of states: Entanglement of the set
of states �� (or ��) cannot be verified with a single linear
witness. Recently, it was shown that it is possible to
improve a linear witness with a term that relies nonlinearly
on the expectation value [25,27,29]. One improvement is
that entanglement of a significantly larger fraction of the
set of states �� (or ��) can be verified with a single
nonlinear witness that contains the same observables as
the linear witness. As an example, the entanglement of
both the Bell states j��i and j�þi can be confirmed by
using a single nonlinear witness.
In our experiment, we compare the accessible nonlinear

witnesses W�þ
1 and W�þ

1 , where the 1 subscript refers to
the final iteration of the procedure for generating the
witness [27,29], to their corresponding linear witnesses

W��
L and W��

L . The expectation value w�þ
1 of the witness

W�þ
1 can be expressed as a combination of expectation

values of measurable operators. Contained within the mea-
surements for the nonlinear witness is a unitary operatorU,
which provides some freedom in choosing the exact form
of the witness. By choosingU to be equal to��z � �z, we
show in the Supplemental Material [30] that the expecta-
tion value of the particular nonlinear witness that we con-
sider in this experiment is given by

w�þ
1 ð�Þ ¼ Trð�W�þ

L Þ � jTrð�W�þ
L Þj2

� jTrð�W�þ
L Þ � Trð�W�þ

L ÞTr½�ð��z � �zÞ�j2
1� jTr½�ð��z � �zÞ�j2

:

(5)

Anticorrelated states

Correlated states

Quantum state preparation

Photon-pair generation
Phase control

BBO crystal Far field of
crystal
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θ/2

FIG. 1 (color online). Experimental setup. In the quantum state
preparation stage, entangled photon pairs are generated by para-
metric down-conversion and are separated into two paths by a
mirror. If a Dove prism is introduced into the upper path,
anticorrelated states are produced. If no prism is placed in the
upper path, correlated states are produced. The angle of the
prism in the lower path controls the relative phase of the two
modes.
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We see that Trð�W�þ
L Þ and Tr½�ð��z � �zÞ� are the only

measurements that are required for the nonlinear witness.
A similar method may be used to generate the nonlinear

improvement of the linear witnessW�þ
L , but in this case we

require U ¼ �z � �z to achieve the same result. The gen-
eral form of the nonlinear witness and the measurements
required to implement it are shown in the Supplemental
Material [30].

Experiment results.—Before we calculate the entangle-
ment witnesses, we perform quantum state tomography
on each input state. We find that our method of quantum
state preparation is able to produce a wide range of
quantum states of the form given in Eqs. (2) and (3) to
a high degree of confidence. In particular, Fig. 2 shows
reconstructed states very close to the maximally
entangled Bell states in the orbital angular momentum
degree of freedom. We find fidelities of 97% between
each anticorrelated state and the corresponding j��i Bell
state and 85% between each correlated state and the
corresponding j��i Bell state.

We note that in our case, because of the differing OAM
values that we detect, our states are not maximally
entangled, but it would be simple to extract out the maxi-
mally entangled Bell states if necessary. These states are
obtained when the j0; 0i term in Eq. (2) [or Eq. (3)] is
replaced by a j � ‘;�‘i term (or a j‘;�‘i term). In other
words, the absolute values of all of the OAM states of

interest are the same. For example, to measure an anticor-
related Bell state for j‘j ¼ 2, the measurements would be
restricted to the subspaces with the OAM values j2;�2i
and j � 2; 2i. However, in accordance with Eqs. (2) and (3),
we measure modes ‘ ¼ 0 and ‘ ¼ �2 such that the coef-
ficients are slightly different, and thus we reconstruct states
very close to the maximally entangled states.
In Fig. 3, we see that a single nonlinear witness is able to

verify the entanglement of a large range of input states, that
is, states of the form either �� or ��. In contrast, no single
linear witness is able to verify entanglement over the same
range; the expectation value of each linear witness is above
zero for half of the states we measure. Since we use
quantum state tomography to confirm that our states are
entangled, this means that each linear witness delivers an
inconclusive result and thus cannot detect entanglement in
a large range of states that are entangled. These results are
for the two-dimensional subspaces described in Eqs. (2)
and (3) where ‘ ¼ 2.
In the anticorrelated case, all expectation values of the

nonlinear witness are negative, indicating entangled states
for all phases observed. In the correlated case, the non-
linear witness is negative for the majority of the observed
states. However, near �=2 and 3�=2, there are three states
that have slightly positive expectation values.
Discussion.—Our results show that a wide range of

two-photon entangled states can be prepared by using a
combination of parametric down-conversion and suitably
oriented Dove prisms. The nonlinear witness expectation
values clearly show that we can establish the entanglement
of the relevant classes of states. In particular, this method
produces the entangled Bell states j��i and j��i.
We note that the correlated states have a lower fidelity

than the anticorrelated states when compared with the
maximally entangled Bell states. We attribute this reduc-
tion in fidelity to the asymmetry introduced when only
one Dove prism is present. This discrepancy between the
correlated and anticorrelated OAM states also highlights
an interesting aspect of nonlinear entanglement witnesses:
the extreme sensitivity of the expectation value with
regards to the outcome of a single projective measure-
ment. As can be seen from Eq. (5), the last term that is
subtracted in the calculation is inversely proportional to
1� jTr½�ð��z � �zÞ�j2 (one minus the square of the
contrast of the OAM correlations), and, consequently,
the precise expectation value that is measured is highly
sensitive to Tr½�ð��z � �zÞ�. As the strength of the
OAM correlations depends critically on a few measure-
ments, so too does the obtained value of w1.
The difference in the range of measured expectation

values originates in the strength of the OAM correlations
for each case. For the anticorrelated states of the form ��,
the average measured value of jTr½�ð��z � �zÞ�j was
equal to 0.92, whereas for the correlated states of the form
��, the average measured value of jTr½�ð��z � �zÞ�j was
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FIG. 2 (color online). Real parts of the density matrices of
anticorrelated states with phase � ¼ 0 (a) and � ¼ �
(b) between the modes and correlated states with phase ’ ¼ 0
(c) and ’ ¼ � (d) between the modes. These are extremely close
to the maximally entangled Bell states, with differences occur-
ring due to the relative coefficients of the OAM values ‘ ¼ 0 and
‘ ¼ �2 that we choose to detect. The anticorrelated states both
have fidelity 97% with their respective maximally entangled Bell
states j��i, and the correlated states both have fidelity 85% with
their respective maximally entangled states j��i. The average of
the absolute values of the imaginary parts is 0:01� 0:01.
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equal to 0.69. The theoretical fits to the data are adjusted
to reflect the appropriate measured contrasts.

In certain situations it would be desirable to further
increase the range of states accessible to nonlinear

witnesses. There are two possible avenues for doing so.
The first method involves adjusting the exact form of the
witness. The only degree of flexibility in the construction
of the accessible nonlinear witnesses described in Ref. [27]
is in the choice of unitary operator U. For our particular
choice of U, a nonlinear improvement on a correlated
linear witness will not be able to detect entanglement in
anticorrelated states, and vice versa. Other choices ofU are
possible, for example, U ¼ ð1� �x � �x � �y � �y þ
�z � �zÞ=2; in this case, U ¼ 2W�þ

L . With this choice of
U, the nonlinear witness can access different states. More

specifically, starting with a linear witness (W�þ
L ) that

detects anticorrelated states, the nonlinear improvement

using U ¼ 2W�þ
L can detect both anticorrelated and

correlated states.
The second method involves using two carefully chosen

nonlinear witnesses. In fact, by using two nonlinear wit-
nesses, it is possible to extend the range sufficiently to
detect entanglement in all qubit entangled states. For ex-
ample, this can be achieved by using the two witnesses
shown in this Letter: one witness that detects the correlated

states (e.g., W�þ
1 ) and one witness that detects the anti-

correlated states (e.g., W�þ
1 ). Using these two witnesses

enables the verification of entanglement of the full range of
pure quantum states, which includes all four Bell states,
with only ten measurements.
Conclusions.—The orbital angular momentum of light is

increasingly becoming an important resource for quantum
information science. Consequently, it is important to
develop a universal set of gates for the spatial degree of
freedom that can then be used for quantum information
processing. The laboratory procedures that we have devel-
oped are important for the generation and controlled ma-
nipulation of many different entangled quantum states.
These operations have particular relevance in applications
such as superdense coding and quantum teleportation. As
entanglement is a fundamental tool in many quantum
information applications, the efficient detection of
entangled states is paramount to the use of such quantum
technologies. We have demonstrated the use of accessible
nonlinear witnesses to verify entanglement in twice as
many states as a single linear witness can. This enhanced
detection range requires no more measurements than are
required for the linear witness. We envisage the continued
application of nonlinear witnesses to other areas of quan-
tum information science, where it is advantageous to
extract maximal information with the minimum number
of measurements.
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FIG. 3 (color online). Experimentally recorded expectation
values of the nonlinear entanglement witness and the two linear
witnesses for correlated (a) and anticorrelated (b) entangled
states for ‘ ¼ 2. A negative expectation value indicates that
the state is entangled. Note that the nonlinear witness correctly
detects entanglement under almost all cases, whereas each of
the linear witnesses often fails to detect entanglement, even
though it is present. For the correlated states, we measured w�þ

1 ,
w�þ

L , and w��
L , and for the anticorrelated states, we measured

w�þ
1 , w�þ

L , and w��
L . The circles give the experimental data

points, and the lines are theoretical predictions obtained by
using average parameters obtained from the data. The vertical
error bars were obtained by applying

ffiffiffiffi
N

p
fluctuations to the

measured coincidence counts and then averaging over 100
iterations to obtain the standard deviation. The horizontal error
bars are estimated to be �=24.
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